
Digital Logic Circuits
Memories

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Timing Analysis of Synchronous Circuits

CS-173, © EPFL, Spring 2025
© sapol / Adobe Stock

2

Previously

▪ Discovered FF timing constraints
and parameters
• Setup time and hold time

• Clock-to-Q

▪ Defined expressions and algorithms for verifying if timing
constraints are met

▪ Learned about metastability

▪ Clock skew: expanded our understanding of timing challenges
in synchronous circuits in presence of clock delays

CS-173, © EPFL, Spring 2025 3

Quick Outline

▪ n-to-2n Binary decoders

▪ Memory
• Data word size, memory capacity

• Abstract view

• Access protocol: write, read

• Memory as a two-dimensional array of DFFs

• Verilog model

▪ Verilog
• Parameterized modules

• Conditional operator
CS-173, © EPFL, Spring 2025

© kras99 / Adobe Stock
4

n-to-2n Binary Decoders

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

5

n-to-2n Binary Decoder

▪ Decoder (in short), is a logic circuit that receives an
n-bit binary vector and produces an output vector
of 2n bits , in which all but one bit are logic zero

▪ Decoding the input: If m is the unsigned decimal
equivalent of the n-bit binary number at the input of
the decoder, the output bit at index m will be set to
logic 1; all other output bits will be logic 0

▪ The outputs of a decoder are one-hot encoded,
meaning that the single bit that is set to 1 is “hot”

CS-173, © EPFL, Spring 2025

 n-to-2n

Decoder

6

E
X

A
M

P
L

E
S

2-to-4 Binary Decoder

CS-173, © EPFL, Spring 2025

▪ A (binary) decoder with inputs and outputs

▪ The input (w1w0) corresponds to binary numbers
• (00)2 = (0)10; (01)2 = (1)10; (10)2 = (2)10; (11)2 = (3)10

▪ Only one bit in the output vector
(y3, y2, y1, y0) is set
• (w1w0) = (00)2 = (0)10 → y0 = 1

• (w1w0) = (01)2 = (1)10 → y1 = 1

• (w1w0) = (10)2 = (2)10 → y2 = 1

• (w1w0) = (11)2 = (3)10 → y3 = 1

2-to-4
Decoder

0

1

0

1

2

3

7

E
X

A
M

P
L

E
S

2-to-4 Binary Decoder

CS-173, © EPFL, Spring 2025

▪ A (binary) decoder with inputs and outputs

▪ Truth table

▪ Logic expressions:

▪ Logic circuit

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

8

E
X

A
M

P
L

E
S

2-to-4 Binary Decoder with an Enable

CS-173, © EPFL, Spring 2025

▪ If the decoder is disabled, , then no output will be set

▪ Truth table: ▪ Logic circuit

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

0 X X 0 0 0 0

9

E
X

A
M

P
L

E
S

2-to-4 Binary Decoder with an Enable
In Verilog

▪ Using Verilog’s conditional operator ?:
The operator is explained on the following slide: link

CS-173, © EPFL, Spring 2025

module two_to_four_dec(W, En, Y);

input [1:0] W;
input En;
output [3:0] Y;

assign Y[0] = En ? (W == 2'b00) : 0;
assign Y[1] = En ? (W == 2'b01) : 0;
assign Y[2] = En ? (W == 2'b10) : 0;
assign Y[3] = En ? (W == 2'b11) : 0;

endmodule

10

E
X

A
M

P
L

E
S

▪ Larger decoders can be
constructed from smaller ones

▪ Figure: 4-to-16 decoder built
using a decoder tree
• One decoder in the “root”

• Four in the “branches”

▪ Example:
• (w3w2w1w0, En) = (1011, 1):

OUTDEC1[2] = 1, EnDEC4 = 1, and
OUTDEC4[3] = y11 = 1

4-to-16 Decoder

CS-173, © EPFL, Spring 2025

1

2

3

4

5

11

CS-173, © EPFL, Spring 2025 12

Memory

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

13

Memory

▪ Is an essential component of any computing system

▪ A memory is a circuit capable of storing information
temporarily or permanently

▪ Many types of memories exist

• SRAM, DRAM, EPROM, Flash, magnetic, optical, …
Note: The implementation details of the above mentioned memories
are out of scope of this course

CS-173, © EPFL, Spring 2025

© Maksym Yemelyanov / Adobe Stock

14

Memory

▪ Memories differ in the physical implementation and cost

▪ As a consequence, their capabilities vary

• Capacity: how many bytes can be stored

• Density: how many bits per unit area (silicon)

• Speed: how much time it takes to read from it or write to it

• Writable or read-only

• Volatile or not: loses contents once the power supply is removed or not

CS-173, © EPFL, Spring 2025

© Maksym Yemelyanov / Adobe Stock

15

(1930s) Punch Cards,
Magnetic Tapes / Drums

Big, slow, store KiBs

Non-Volatile
Slow

[Mechanical]
(Magnetic) Hard Disk, Floppy; (Optical) CD/DVD

Slow, store MiBs,GiBs,TiBs
[Electronic] SSD
Fast, store GiBs

Non-Volatile, Slow → Data Storage

Evolution of Memory

(1970s) Semiconductors
Small, slow, store KiBs

SRAM
Fast, store MiBs

DRAM
Slower, store GiBs

Volatile, Fast → Computational memory

CS-173, © EPFL, Spring 2025 16

Smartphone

Datacenter (Cloud)

What are We Using?

Laptop / Workstation

CS-173, © EPFL, Spring 2025 17

▪ A two-dimensional array of 1-bit memory
elements (e.g., DFFs, latches, capacitors)

▪ One memory element mem[i], where i is
the index of the row in the two-dimensional
array of bits, includes all bits in that row of
the memory array and is typically referred to
as one data word

▪ In memory terminology, instead of saying
the index, we say the address of the data word

Abstract View of Memory

CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[2N - 3]

mem[2N - 2]

mem[2N - 1]

Data word width (in Bytes)

Index (Address)

0

1

2

2N - 1

2N - 2

2N - 3

… …

Number
of data
words

18

Word Sizes

▪ Data word sizes and common terminology:

• 8 bits = one byte (Byte, B)

• 16 bits (also called half-word)

• 32 bits, 64 bits

▪ Memory capacity is the total number of
data bytes it can store

• (Number of words) × (word width in bytes)

▪ Number of words = 2N, where N is the number
of bits of the address

CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[2N - 3]

mem[2N - 2]

mem[2N - 1]

Data word width (in Bytes)

Index (Address)

0

1

2

2N - 1

2N - 2

2N - 3

… …

Number
of data
words

19

Memory Capacity

▪ Recall: memory capacity is the total
number of data bytes it can store

▪ Memory units (Wiki link)
• Kilobyte (KiB) = 210 B

• Megabyte (MiB) = 220 B

• Gigabyte (GiB) = 230 B

• Terabyte (TiB) = 240 B

CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[2N - 3]

mem[2N - 2]

mem[2N - 1]

Data word width (in Bytes)

Index (Address)

0

1

2

2N - 1

2N - 2

2N - 3

… …

Number
of data
words

20

https://en.wikipedia.org/wiki/Units_of_information

CS-173, © EPFL, Spring 2025 21

Memory
Access Protocol

▪ Many variants exist, differing in control
signals, their polarity, number of inputs and
outputs, width of inputs and outputs, etc.

In this lecture, we consider the following
simple memory access protocol:

▪ Synchronous write: on the rising clock edge,
if write enable (we) is active, memory write
takes place: mem[addr] = data_in

▪ Asynchronous read: at all times, memory
read takes place: data_out = mem[addr]

CS-173, © EPFL, Spring 2025

addr

data_in

data_out

we

Nawidth

Ndwidth

Ndwidth

Memory
Two-dimensional array

mem

Ndwidth

2Nawidth

22

Memory
Write

Example:

▪ Nawidth = 4

▪ Ndwidth = 8

▪ addr = (0100)2 = (4)10

▪ data_in = (B7)16

▪ we = 1

Memory read takes place and
old mem[4] appears at data_out port

Memory write takes place and
data_in overwrites mem[4];
new value of mem[4] = (B7)16

CS-173, © EPFL, Spring 2025

1 0 1 1 0 1 1 1

addr

data_in

data_out

we

0

1

2

3

5

6

7

8

9

10

12

11

13

14

15

4

Memory
Two-dimensional array

8

8

(0100)2

(B7)16

4

1

23

Memory
Read

Example:

▪ Nawidth = 4

▪ Ndwidth = 8

▪ addr = (0110)2 = (6)10

▪ we = 0

Memory read takes place and
mem[6] appears at data_out port:
data_out = mem[6] = (14)16

Memory write is not taking place

CS-173, © EPFL, Spring 2025

(0110)2

0 0 1 0 1 0 00

addr

data_in

data_out

we

0

1

2

3

5

6

7

8

9

10

12

11

13

14

15

4

Memory
Two-dimensional array

8

8

4

0

24

Constructing a 4×4 DFF Array

▪ 4 × 4 stands for 4 memory rows, each row having 4 data bits

▪ Q: Ndwidth = ?

▪ A: 4

▪ Q: Nawidth = ?

▪ A: log2(4) = 2

CS-173, © EPFL, Spring 2025 25

Memory as an Array of DFFs
Internals of a 4×4 Memory Array

CS-173, © EPFL, Spring 2025

4×4 Memory Array

26

Memory as an Array of DFFs
Internals of a 4×4 Memory Array

CS-173, © EPFL, Spring 2025

4×4 Memory Array

27

Memory Terminology, Contd.

▪ The outputs of the address decoder, which enable one entire row
of the memory array, are called word lines

▪ The wires that carry data (input, output, or sometimes a shared
in/out bus) are called bit lines

CS-173, © EPFL, Spring 2025 28

CS-173, © EPFL, Spring 2025 29

Arrays
In Verilog

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

30

Two-Dimensional Arrays
In Verilog

▪ Recall: A memory is a two-dimensional array of bits

▪ In Verilog, we can declare two-dimensional arrays

▪ An array mem of Ndw data words, where each word has Ndb bits,
is declared as

CS-173, © EPFL, Spring 2025

reg [Ndb-1:0] mem [Ndw-1:0];

31

E
X

A
M

P
L

E
S

Two-Dimensional Arrays
In Verilog

▪ Recall:

▪ For example:

• mem is an array of four bytes
mem[3], mem[2], mem[1], and mem[0]

• Two-level indexing can be used,
e.g., mem[3][7]

CS-173, © EPFL, Spring 2025

reg [7:0] mem [3:0];
mem[0]

mem[1]

mem[2]

mem[3]

Ndb = 8 bits = one Byte

Index

0

1

2

Ndw = 4
data words

3

reg [Ndb-1:0] mem [Ndw-1:0];

32

Memories
In Verilog

▪ Recall:

CS-173, © EPFL, Spring 2025

addr

data_in

data_out

we

Nawidth

Ndwidth

Ndwidth

Memory
Two-dimensional array

mem

Ndwidth

2Nawidth

33

Memories
In Verilog

CS-173, © EPFL, Spring 2025

Note 1: Power operator **; for example: a ** b raises a to the power b
Note 2: How to instantiate memory modules with different values for Naddr and Ndata: link

module mem (addr, data_in, we, clk, data_out);
parameter Nawidth = 2; // arbitrary default
parameter Ndwidth = 4; // arbitrary default
input we, clk; // write enable and clock
input [Nawidth-1:0] addr;
input [Ndwidth-1:0] data_in;
output [Ndwidth-1:0] data_out;
// memory array:
reg [Ndwidth-1:0] mem [2**Nawidth-1:0];

always @(posedge clk) begin
if (we) begin

mem[addr] <= data_in;
end

end

assign data_out = mem[addr];
endmodule

34

CS-173, © EPFL, Spring 2025 35

Verilog
• Parameterized modules

• Conditional operator

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

36

© kras99 / Adobe Stock

Parameterized Verilog Modules

CS-173, © EPFL, Spring 2025 37

Parameterized Verilog Modules

▪ Verilog parameters can be put to good use, to allow instantiated modules
to accept inputs and outputs of arbitrary width

CS-173, © EPFL, Spring 2025 38

E
X

A
M

P
L

E
S

Parameterized Verilog Modules
Example: Majority Function

▪ Example: Consider a 3-input majority function, which produces a logic 1 if at
least two of its inputs (i.e., the majority of its inputs) are logic 1

OUT = (I0 & I1) | (I0 & I2) | (I1 & I2);

How can we write one majority module description but then create two
instances, U1 and U2, each accepting different WIDTH of inputs and outputs?

CS-173, © EPFL, Spring 2025 39

E
X

A
M

P
L

E
S

Parameterized Verilog Module
Example: Majority Function, Contd.

▪ Consider a 3-input majority function, which produces a logic 1 if at least two
of its inputs (i.e., the majority of its inputs) are logic 1

▪ If we instantiate the module without modifying the value of the parameter
WIDTH, the default value will be considered
• In our example, the default is WIDTH = 1

CS-173, © EPFL, Spring 2025

module majority(I0, I1, I2, OUT);
parameter WIDTH = 1; // default parameter value
input [WIDTH-1:0] I0, I1, I2;
output [WIDTH-1:0] OUT;

assign OUT = (I0 & I1) | (I0 & I2) | (I1 & I2);
endmodule

40

E
X

A
M

P
L

E
S

Parameterized Verilog Module
Example: Majority Function, Contd.

▪ Verilog allows us to override the default parameter value
• Example, majority modules with 4-bit and 8-bit inputs and outputs:

CS-173, © EPFL, Spring 2025

// Instantiating majority module;
// Overriding the default value of WIDTH = 1;
// New value: WIDTH = 4;

majority #(.WIDTH(4)) U1 (.I0(A), .I1(B), .I2(C), .OUT(D));

// Instantiating majority module;
// Overriding the default value of WIDTH = 1;
// New value: WIDTH = 8;

majority #(.WIDTH(8)) U2 (.I0(X), .I1(Y), .I2(Z), .OUT(W));

41

Conditional Operator
In Verilog

CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock

42

Verilog Conditional Operator

▪ Conditional operator ?: select one of the two alternate
expressions (B, C) depending on the value of a logical expression (A)
• If the logical expression (A) is true, it returns the first alternative (B)

• Otherwise, it returns the second alternative (C)

CS-173, © EPFL, Spring 2025

A ? B : C

Return to the Verilog description of 2-to-4 decoder: link 43

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 4: Combinational-Circuit Building
Blocks
▪ 4.2 Decoders

▪ Appendix A: Verilog Reference
▪ A.6.3 Memories

44

