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Previously on FDS
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Previously

▪ Discovered FF timing constraints
and parameters
• Setup time and hold time

• Clock-to-Q

▪ Defined expressions and algorithms for verifying if timing 
constraints are met

▪ Learned about metastability

▪ Clock skew: expanded  our understanding of timing challenges
in synchronous circuits in presence of clock delays
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Quick Outline

▪ n-to-2n Binary decoders

▪ Memory
• Data word size, memory capacity

• Abstract view

• Access protocol: write, read

• Memory as a two-dimensional array of DFFs

• Verilog model

▪ Verilog
• Parameterized modules

• Conditional operator
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n-to-2n Binary Decoders
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n-to-2n Binary Decoder

▪ Decoder (in short), is a logic circuit that receives an 
n-bit binary vector and produces an output vector
of 2n bits , in which all but one bit are logic zero

▪ Decoding the input: If m is the unsigned decimal 
equivalent of the n-bit binary number at the input of 
the decoder, the output bit at index m will be set to 
logic 1; all other output bits will be logic 0

▪ The outputs of a decoder are one-hot encoded, 
meaning that the single bit that is set to 1 is “hot”
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2-to-4 Binary Decoder
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▪ A (binary) decoder with             inputs and               outputs

▪ The input (w1w0) corresponds to binary numbers
• (00)2 = (0)10; (01)2 = (1)10; (10)2 = (2)10; (11)2 = (3)10

▪ Only one bit in the output vector
(y3, y2, y1, y0) is set
• (w1w0) = (00)2 = (0)10 → y0 = 1

• (w1w0) = (01)2 = (1)10 → y1 = 1

• (w1w0) = (10)2 = (2)10 → y2 = 1

• (w1w0) = (11)2 = (3)10 → y3 = 1

2-to-4
Decoder
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2-to-4 Binary Decoder
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▪ A (binary) decoder with             inputs and               outputs

▪ Truth table

▪ Logic expressions:

▪ Logic circuit

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
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2-to-4 Binary Decoder with an Enable
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▪ If the decoder is disabled,                , then no output will be set

▪ Truth table: ▪ Logic circuit

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

0 X X 0 0 0 0
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2-to-4 Binary Decoder with an Enable
In Verilog

▪ Using Verilog’s conditional operator ?:
The operator is explained on the following slide: link
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module two_to_four_dec(W, En, Y);

input [1:0] W;
input En;
output [3:0] Y;

assign Y[0] = En ? (W == 2'b00) : 0;
assign Y[1] = En ? (W == 2'b01) : 0;
assign Y[2] = En ? (W == 2'b10) : 0;
assign Y[3] = En ? (W == 2'b11) : 0;

endmodule
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▪ Larger decoders can be 
constructed from smaller ones

▪ Figure: 4-to-16 decoder built 
using a decoder tree
• One decoder in the “root”

• Four in the “branches”

▪ Example:
• (w3w2w1w0, En) = (1011, 1):

OUTDEC1[2] = 1, EnDEC4 = 1, and
OUTDEC4[3] = y11 = 1

4-to-16 Decoder

CS-173, © EPFL, Spring 2025

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 
1

2

3

4

5

11



CS-173, © EPFL, Spring 2025 12



Memory
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Memory

▪ Is an essential component of any computing system

▪ A memory is a circuit capable of storing information
temporarily or permanently

▪ Many types of memories exist

• SRAM, DRAM, EPROM, Flash, magnetic, optical, …
Note: The implementation details of the above mentioned memories
are out of scope of this course
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Memory

▪ Memories differ in the physical implementation and cost

▪ As a consequence, their capabilities vary

• Capacity: how many bytes can be stored

• Density: how many bits per unit area (silicon)

• Speed: how much time it takes to read from it or write to it

• Writable or read-only

• Volatile or not: loses contents once the power supply is removed or not
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(1930s) Punch Cards,
Magnetic Tapes / Drums

Big, slow, store KiBs

Non-Volatile
Slow

[Mechanical]
(Magnetic) Hard Disk, Floppy; (Optical) CD/DVD

Slow, store MiBs,GiBs,TiBs
[Electronic] SSD
Fast, store GiBs

Non-Volatile, Slow → Data Storage

Evolution of Memory

(1970s) Semiconductors
Small, slow, store KiBs

SRAM
Fast, store MiBs

DRAM
Slower, store GiBs

Volatile, Fast → Computational memory
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Smartphone

Datacenter (Cloud)

What are We Using?

Laptop / Workstation
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▪ A two-dimensional array of 1-bit memory 
elements (e.g., DFFs, latches, capacitors)

▪ One memory element mem[i], where i is
the index of the row in the two-dimensional 
array of bits, includes all bits in that row of 
the memory array and is typically referred to
as one data word

▪ In memory terminology, instead of saying
the index, we say the address of the data word

Abstract View of Memory
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mem[0]

mem[1]

mem[2]

mem[2N - 3]

mem[2N - 2]

mem[2N - 1]

Data word width (in Bytes)

Index (Address)
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of data
words
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Word Sizes

▪ Data word sizes and common terminology:

• 8 bits = one byte (Byte, B)

• 16 bits (also called half-word)

• 32 bits, 64 bits

▪ Memory capacity is the total number of
data bytes it can store

• (Number of words) × (word width in bytes)

▪ Number of words = 2N, where N is the number 
of bits of the address
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Memory Capacity

▪ Recall: memory capacity is the total 
number of data bytes it can store

▪ Memory units (Wiki link)
• Kilobyte (KiB) = 210 B

• Megabyte (MiB) = 220 B

• Gigabyte (GiB) = 230 B

• Terabyte (TiB) = 240 B
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Memory
Access Protocol

▪ Many variants exist, differing in control 
signals, their polarity, number of inputs and 
outputs, width of inputs and outputs, etc. 

In this lecture, we consider the following 
simple memory access protocol:

▪ Synchronous write: on the rising clock edge, 
if write enable (we) is active, memory write
takes place: mem[addr] = data_in

▪ Asynchronous read: at all times, memory 
read takes place: data_out = mem[addr]
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addr

data_in

data_out

we

Nawidth

Ndwidth

Ndwidth

Memory
Two-dimensional array

mem

Ndwidth

2Nawidth
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Memory
Write

Example:

▪ Nawidth = 4

▪ Ndwidth = 8

▪ addr = (0100)2 = (4)10

▪ data_in = (B7)16

▪ we = 1

Memory read takes place and
old mem[4] appears at data_out port

Memory write takes place and
data_in overwrites mem[4];
new value of mem[4] = (B7)16
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Memory
Read

Example:

▪ Nawidth = 4

▪ Ndwidth = 8

▪ addr = (0110)2 = (6)10 

▪ we = 0

Memory read takes place and
mem[6] appears at data_out port:
data_out = mem[6] = (14)16

Memory write is not taking place
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Constructing a 4×4 DFF Array

▪ 4 × 4  stands for 4 memory rows, each row having 4 data bits

▪ Q: Ndwidth = ?

▪ A: 4

▪ Q: Nawidth = ?

▪ A: log2(4) = 2
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Memory as an Array of DFFs
Internals of a 4×4 Memory Array
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4×4 Memory Array
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Memory as an Array of DFFs
Internals of a 4×4 Memory Array
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4×4 Memory Array
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Memory Terminology, Contd.

▪ The outputs of the address decoder, which enable one entire row 
of the memory array, are called word lines

▪ The wires that carry data (input, output, or sometimes a shared 
in/out bus) are called bit lines
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Arrays
In Verilog
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Two-Dimensional Arrays
In Verilog

▪ Recall: A memory is a two-dimensional array of bits

▪ In Verilog, we can declare two-dimensional arrays

▪ An array mem of Ndw data words, where each word has Ndb bits, 
is declared as
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reg [Ndb-1:0] mem [Ndw-1:0];
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Two-Dimensional Arrays
In Verilog

▪ Recall:

▪ For example:

• mem is an array of four bytes
mem[3], mem[2], mem[1], and mem[0]

• Two-level indexing can be used,
e.g., mem[3][7]
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reg [7:0] mem [3:0];
mem[0]

mem[1]

mem[2]

mem[3]

Ndb = 8 bits = one Byte

Index

0

1

2

Ndw = 4
data words

3

reg [Ndb-1:0] mem [Ndw-1:0];
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Memories
In Verilog

▪ Recall:
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addr

data_in

data_out

we

Nawidth

Ndwidth

Ndwidth

Memory
Two-dimensional array

mem

Ndwidth

2Nawidth
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Memories
In Verilog
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Note 1: Power operator **; for example: a ** b raises a to the power b
Note 2: How to instantiate memory modules with different values for Naddr and Ndata: link

module mem (addr, data_in, we, clk, data_out);
parameter Nawidth = 2; // arbitrary default
parameter Ndwidth = 4; // arbitrary default
input we, clk; // write enable and clock
input [Nawidth-1:0] addr;
input [Ndwidth-1:0] data_in;
output [Ndwidth-1:0] data_out;
// memory array:
reg [Ndwidth-1:0] mem [2**Nawidth-1:0];

always @(posedge clk) begin
if (we) begin

mem[addr] <= data_in;
end

end

assign data_out = mem[addr];
endmodule
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Verilog
• Parameterized modules

• Conditional operator
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Parameterized Verilog Modules
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Parameterized Verilog Modules

▪ Verilog parameters can be put to good use, to allow instantiated modules
to accept inputs and outputs of arbitrary width
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Parameterized Verilog Modules
Example: Majority Function

▪ Example: Consider a 3-input majority function, which produces a logic 1 if at 
least two of its inputs (i.e., the majority of its inputs) are logic 1

OUT = (I0 & I1) | (I0 & I2) | (I1 & I2);

How can we write one majority module description but then create two 
instances, U1 and U2, each accepting different WIDTH of inputs and outputs?
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Parameterized Verilog Module
Example: Majority Function, Contd.

▪ Consider a 3-input majority function, which produces a logic 1 if at least two 
of its inputs (i.e., the majority of its inputs) are logic 1

▪ If we instantiate the module without modifying the value of the parameter 
WIDTH, the default value will be considered
• In our example, the default is WIDTH = 1
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module majority(I0, I1, I2, OUT);
parameter WIDTH = 1; // default parameter value
input [WIDTH-1:0] I0, I1, I2;
output [WIDTH-1:0] OUT;

assign OUT = (I0 & I1) | (I0 & I2) | (I1 & I2);
endmodule
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Parameterized Verilog Module
Example: Majority Function, Contd.

▪ Verilog allows us to override the default parameter value
• Example, majority modules with 4-bit and 8-bit inputs and outputs:
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// Instantiating majority module;
// Overriding the default value of WIDTH = 1;
// New value: WIDTH = 4;

majority #(.WIDTH(4)) U1 (.I0(A), .I1(B), .I2(C), .OUT(D));

// Instantiating majority module;
// Overriding the default value of WIDTH = 1;
// New value: WIDTH = 8;

majority #(.WIDTH(8)) U2 (.I0(X), .I1(Y), .I2(Z), .OUT(W));
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Conditional Operator
In Verilog
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Verilog Conditional Operator

▪ Conditional operator   ?: select one of the two alternate 
expressions (B, C) depending on the value of a logical expression (A)
• If the logical expression (A) is true, it returns the first alternative (B)

• Otherwise, it returns the second alternative (C)
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A ? B : C

Return to the Verilog description of 2-to-4 decoder: link 43



Literature
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▪ Chapter 4: Combinational-Circuit Building 
Blocks
▪ 4.2 Decoders

▪ Appendix A: Verilog Reference
▪ A.6.3 Memories
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