Digital Logic Circuits

Memories

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

FUNDAMENTALﬂlO)

) | |
L

H

H

i

//.

///

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

Timing Analysis of Synchronous Circuits

CS-173, © EPFL, Spring 2025 2
© sapol / Adobe Stock

Previously A

= Discovered FF timing constraints e
and parameters -
« Setup time and hold time
» Clock-t0-Q

= Defined expressions and algorithms for verifying if timing
constraints are met

= |_earned about metastability

= Clock skew: expanded our understanding of timing challenges
in synchronous circuits in presence of clock delays

Quick Outline

» Nn-to-2" Binary decoders

= Memory
« Data word size, memory capacity

» Abstract view RN :E_-. e ——

» Access protocol: write, read e
» Memory as a two-dimensional array of DEFs - ——
. Verilog model

'V@I’”OQ - g o s me wm g <y
 Parameterized modules
» Conditional operator

CS-173, © EPFL, Spring 2025 4
© kras99 / Adobe Stock

* s s s E S E N EEEEENES
HEE NN NDE 8
*» * » s m EEEEEEHEN

n-to-2" Binary Decoders ey ——_—‘——=

CS-173, © EPFL, Spring 2025 3
© kras99 / Adobe Stock

n-to-2" Binary Decoder

= Decoder (in short), is a logic circuit that receives an
n-bit binary vector and produces an output vector
of 2" bits , in which all but one bit are logic zero

= Decoding the input: If m is the unsigned decimal
equivalent of the n-bit binary number at the input of
the decoder, the output bit at index m will be set to
logic 1; all other output bits will be logic O

= The outputs of a decoder are one-hot encoded,
meaning that the single bit that is setto 1 is "hot”

Yo
Yi
Wo
n-to-2"
Decoder
Wn 1
Yon _o
Yon _4

2-to-4 Binary Decoder

= A (binary) decoder with n = 2 inputs and 2™ = 4 outputs

= The input (w,w,) corresponds to binary numbers
* (00); = (0)10; (OT)2 = (1)10; (10) = (2)10; (11)2 = (B
» Only one bit in the output vector

(7]
i
—
o
=
<
x
1]

(Y3 Y2 Y1 Yo) is set

+ (Wywo) = (00); = (0)10— Yo = 1 S
(Wywg) = (01), = (1)10 — V5 = o |, oot
(Wywg) =(10) = (2)10 = ¥ = 3
(Wywg) = (11)y=(8)10 > Vg =

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

2-to-4 Binary Decoder

= A (binary) decoder with n = 2 inputs and 2™ = 4 outputs

= Truth table
wy Wo | Yo Y1 Y2 Y3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

» Logic expressions:
Yo = W1 Wo Y1 = W1 Wo

Yo = W1 Wo Y3 — W1 Wy
CS-17/3, © EPFL, Spring 2025

» Logic circuit

2-to-4 Binary Decoder with an Enable

= |f the decoder is disabled, En = 0, then no output will be set

= Truth table: = |_ogic circuit
] - mmm e mm———— - !
o |
= En w1 wo| Yo Y1 Y2 Y3 Wo —|—'—D° L] :
S ! Yo
@ 1 0 0/ 1 0 0 O .
Wi o .
1 0 110 1 0 0 | !
1 1 0] 0o o 1 o0 | =Y
1T 1 1] 0 0 0 1 : |
0 X X| 0 0 0 0 ! Ly,
I
I I
! |
: - U3
CS-173, © EPFL, Spring 2025 ETL i :

(7]
w
—
o
=
<
>
]

2-to-4 Binary Decoder with an Enable

In Verilog

= Using Verilog's conditional operator ?:
The operator is explained on the following slide: link

module two_to four_dec(W, En, Y);

input [1:0] W;
input En;
output [3:0] V;

assign Y[0] = En ? (W == 2'b00) : 0O;
assign Y[1] = En ? (W == 2'b01) : 0O;
assign Y[2] = En ? (W == 2'b10) : 0O;
assign Y[3] = En ? (W == 2'b11) : ©O;

endmodule

CS-173, © EPFL, Spring 2025

10

4-t0-16 Decoder

= _arger decoders can be
constructed from smaller ones

= Figure: 4-t0-16 decoder built
using a decoder tree
* One decoder in the “root”
* Four in the "branches”

= Example:
o (WaW,W,Wq, En) = (1011, 1):
OUTpeeql2] = 1, Engees = 1, and
OUTpecsl3] = yqq =1

CS-173, © EPFL, Spring 2025

e Em o o o o o O O e e D EE Em s e .

W 0 O Yo
w - 1 1]
1I 2 ! Y1
| 21 Y2
I En 3 Y3
I I
| |
| |
I 0 O Y4
' 1 1H-
: 3 | Ys
I 2|_ Ye
W2 110 0— En 3 Y7
w3 —H1 1 I
| 1 |
| 2 |
En-En 3 0 O Y8
I 1 1H Yo
: 4 2JI— Y10
I En 3|_ Y11
I I
I [
I I
| 0 O~ Y12
I 1 5 1 Y13
l (]
| 21— Y14
I En 3:— Y15
|

11

CS-173, © EPFL, Spring 2025

12

Memory

CS-173, © EPFL, Spring 2025

" s s EEEEEREN
= = s E E N EENEEERER
" s @ S EEEEEEREN
--------- " N EEEIEESEEENR
T " n g EEESREEEENEEN
« s s w am ----Illlszllll
...... s EEEEEEEENENR .
.-ulllllllll.l
s saEEEEENEEEN
--llllllllﬁlll....

romes

o B RN s s s ENEEEZUNEEER 7"’,_ e
------ -llIllllﬁ‘l./éﬂ._

m lllllllll_ﬁpﬁi&ﬂ_

13
© kras99 / Adobe Stock

Memory

= |s an essential component of any computing system |
© Maksym Yemelyanov / Adobe Stock

= A memory is a circuit capable of storing information
temporarily or permanently
= Many types of memories exist
« SRAM, DRAM, EPROM, Flash, magnetic, optical, ...

Note: The implementation details of the above mentioned memories
are out of scope of this course

CS-173, © EPFL, Spring 2025 14

Memory

Tyl

= Memories differ in the physical implementation and cost |
© Maksym Yemelyanov / Adobe Stock

= As a consequence, their capabilities vary
 Capacity: how many bytes can be stored
« Density: how many bits per unit area (silicon)
« Speed: how much time it takes to read from it or write to it
« Writable or read-only
* Volatile or not: loses contents once the power supply is removed or not

CS-173, © EPFL, Spring 2025 15

Slow

[Mechanical

I\/IagneUc) Hard Disk, Floppy; (Optical) CD/DVD [Electronic] SSD
Slow, store MiBs,GiBs, TiBs Fast, store GiBs

Non-Volatile, Slow — Data Storage

WAL L e S

Volatile, Fast — Computational memory

(1930s) Punch Cards, opry
Magnetic Tapes / Drums (1970s) Semiconductors Fast store MiBs DRAM

cs Big, stow; store KiBs Small, slow, store KiBs

Slower, store GiBs ,

What are We Using?

CS-173, © EPFL, Sprin®2025 17

Abstract View of Memory

Index (Address)
= A two-dimensional array of 1-bit memory 0 mem|[0]
elements (e.g., DFFs, latches, capacitors) : mem[1]
2 mem|2]

= One memory element memli], where i is
the index of the row in the two-dimensional
array of bits, includes all bits in that row of

the memory array and is typically referred to oN_-3 | mem|[2N - 3]

as one data word N-9 | mem[2N-2]

= [n memory terminology, instead of saying N1 | mem[2N-1]

the index, we say the address of the data word

Number
of data
words

Data word width (in Bytes)

CS-173, © EPFL, Spring 2025

18

Word Sizes

= Data word sizes and common terminology:
« 8 bits = one byte (Byte, B)
* 16 bits (also called half-word)
« 32 bits, 64 bits

= Memory capacity is the total number of
data bytes it can store

« (Number of words) x (word width in bytes)

= Number of words = 2N where N is the number
of bits of the address

CS-173, © EPFL, Spring 2025

Index (Address)
0 mem|0]
1 mem|[1]
2 mem|2]
Number
o o of data
words

2N -3 mem[2N - 3]

N _ 9 mem|[2N - 2]

oN_1 | mem[2N-1]

Data word width (in Bytes)

19

Memory Capacity

= Recall: memory capacity is the total
number of data bytes it can store

= Memory units (Wiki [ink)
« Kilobyte (KiB) =210B
« Megabyte (MiB) =2%°B
« Gigabyte (GiB) =23B
« Terabyte (TiB) =24B

CS-173, © EPFL, Spring 2025

Index (Address)
0 mem|0]
1 mem|[1]
2 mem|2]
2N -3 mem[2N - 3]
N _ 9 mem|[2N - 2]
oN_1 | mem[2N-1]

Number
of data
words

Data word width (in Bytes)

20

https://en.wikipedia.org/wiki/Units_of_information

CS-173, © EPFL, Spring 2025

27

Memory

Access Protocol

Ndwidth

= Many variants exist, differing in control
signals, their polarity, number of inputs and Nawiatn "
outputs, width of inputs and outputs, etc. 7 addr

In this lecture, we consider the following Novgtr

. —~+— data_in N, .
simple memory access protocol: dwidth
P y P mem data_out —~4—

= Synchronous write: on the rising clock edge, o Nawidth
if write enable (we) is active, memory write
takes place: mem[addr| = data_in

= Asynchronous read: at all times, memory — we
read takes place: data_out = mem[addr]

Memory
Two-dimensional array

CS-173, © EPFL, Spring 2025 22

Memory

Write
Example:

. Nawid’[h =4
" Nawigen = 8

= addr = (0100), = (4),,
= data_in = (B7)4¢
= we =1

Memory read takes place and
old mem[4] appears at data_out port

Memory write takes place and
data_in overwrites mem][4];
new value of mem([4] = (B7),

CS-173, © EPFL, Spring 2025

(0100), 74; addr
\

(B7)16 78; data_in

T —— we

«q b W N - O

00 N \Oo

11
12
13
14
15

Memory

Two-dimensional array

8
data_out —~4—

23

Memory

Read
| 0
Example: 1
4
" Nawidth =4 (01 1 0)2 —4A— addr §
" Ngyigth = 8 \ ‘5‘
= addr = (0110), = (6)1g 8 data in ©101010]1]0]1 OOX
/ - 7
=we=0 8 i data_outﬁ%&»
9
Memory read takes place and 10
11
mem|6] appears at data_out port: .
data_out = meml[6] = (14), 0—— we 13
14
> 15 Memory

Memory write is not taking place
cmory e gp Two-dimensional array

CS-173, © EPFL, Spring 2025 24

Eh Constructing a 4x4 DFF Array

= 4 x 4 stands for 4 memory rows, each row having 4 data bits

" Q. Ngwidgth = 7
= A 4

" Q" Nawigth = 7
= A:log2(4) = 2

CS-173, © EPFL, Spring 2025

25

Memory as an Array of DFFs
Internals of a 4x4 Memory Array

addr [1:0] ——

—— data_out [3:0]

we —i—

ok —

data_in [3:0] —-—

4x4 Memory Array

CS-173, © EPFL, Spring 2025

26

Memory as an Array of DFFs

Internals of a 4x4 Memory Array

addr [1:0]

we

clk
data_in [3:0]

CS-173, © EPFL, Spring 2025

D QM D Q D Q D Q ‘
EN EN EN EN
AN AN 0
D Qh D Qh D Qh D Q
EN EN EN EN
a1 g N i N
.
8 AN AN _L 1
a 2
< D QM D Q D QM D Q '
S 5 EN EN EN —EN E. —— data_out [3:0]
~ ol
AN AN \ > g
D QM D Q- D QM D Q
EN EN EN EN EN
3 | | | |
AN AN \ 3
/ / / / _~
4x4 Memory Array

27

Memory Terminology, Contd.

= The outputs of the address decoder, which enable one entire row
of the memory array, are called word lines

= The wires that carry data (input, output, or sometimes a shared
in/out bus) are called bit lines

CS-173, © EPFL, Spring 2025

29

CTRE o QT T R s EENEEESEEEEN
------- EEEEENEEEEEE N S

.--IIIIIIIII.

----mmﬁllllll

s EEEEENZUNENEEN ,; —
------- ||-llll!‘ll/ﬂl._ | "
IIIIIIIIII‘-<E§1_

A I I‘ays _______ ks = =

' 30
D © kras99 / Adobe Stock

Two-Dimensional Arrays

In Verilog

= Recall: A memory is a two-dimensional array of bits
* |[n Verilog, we can declare two-dimensional arrays

= An array mem of Ndw data words, where each word has Ndb bits,
s declared as

reg [Ndb-1:0] mem [Ndw-1:0];

(7]
i
—
o
=
<
x
1]

Two-Dimensional Arrays

In Verilog

= Recall:

reg [Ndb-1:0] mem [Ndw-1:0];

= For example:
reg [7:0] mem [3:0];

* mem iS an array of four bytes
mem[3], mem[2], mem[1], and mem[0]
« Two-level indexing can be used,
e.g,mem[3][7]

CS-173, © EPFL, Spring 2025

Index
0 mem|0]
1 mem|1]
2 mem|2]
3 mem|3]

Ndb = 8 bits = one Byte

Ndw =4
data words

32

Memories

In Verilog

» Recall:

CS-173, © EPFL, Spring 2025

Nawidth

7'; addr

Ndwidth

—~+— data_in

2Navvidth

——— We

Ndwidth

A

\ 4

mem

NdWid’[h

data_out —~£—

Memory

Two-dimensional array

33

Memories

In Verilog module mem (addr, data_in, we, clk, data_out);

parameter Nawidth = 2; // arbitrary default
parameter Ndwidth = 4; // arbitrary default
input we, clk; // write enable and clock
input [Nawidth-1:0] addr;

input [Ndwidth-1:0] data_in;

output [Ndwidth-1:0] data out;

// memory array:

reg [Ndwidth-1:0] mem [2**Nawidth-1:0];

always @(posedge clk) begin
if (we) begin
mem[addr] <= data_in;
end
end

assign data out = mem[addr];
endmodule

Note 1: Power operator **; for example: a ** b raises a to the power b
Note 2: How to instantiate memory modules with different values for Naddr and Ndata: link

CS-173, © EPFL, Spring 2025

35

Verilog

« Parameterized modules
« Conditional operator

CS-173, © EPFL, Spring 2025

LI | EEEEN
IIIIIII
EREEENEEN
L] EEEEEEENR
HEEEEN NS

. == |llllll...__
EEENN ll/ﬂll_
---m-lnl‘-<=f§i—

36
© kras99 / Adobe Stock

lllllllllll

IlllﬁilIﬁ‘L

Parameterized Verilog Modules

CS-173, © EPFL, Spring 2025

EEEERESEEENR
0 E 0 NS

« + = ® = m oE BB
s EEZENENEN
IIIIIIII—

s EmRann
" s amEEDN

37
© kras99 / Adobe Stock

Parameterized Verilog Modules

= Verilog parameters can be put to good use, to allow instantiated modules
to accept inputs and outputs of arbitrary width

(7]
i
—
o
=
<
x
1]

Parameterized Verilog Modules

Example: Majority Function

= Example: Consider a 3-input majority function, which produces a logic 1 if at
least two of its inputs (i.e., the majority of its inputs) are logic 1

OUT = (I0 & I1) | (I0 & I2) | (I1 & I2);

How can we write one majority module description but then create two
instances, U1 and U2, each accepting different WIDTH of inputs and outputs?

majority U1l majority U2
WIDTH = 4 WIDTH = 8
—10 —+110
——1n OUT|— —n OUTHS—
—{12 12
CS-173, © EPFL, Spring 2025

39

Parameterized Verilog Module

Example: Majority Function, Contd.

= Consider a 3-input majority function, which produces a logic 1 if at least two
of its inputs (i.e., the majority of its inputs) are logic 1

o module majority(I0, I1, I2, OUT); majority
o parameter WIDTH = 1; // default parameter value _
2 input [WIDTH-1:0] I0, I1, I2; WioTH WibTH = 1
- output [WIDTH-1:0] OUT; ——10 —
711 OUT
assign OUT = (I0 & I1) | (I0 & I2) | (I1 & I2); 2 |
endmodule

= |f we instantiate the module without modifying the value of the parameter
WIDTH, the default value will be considered
* |n our example, the default is WIDTH = 1

CS-173, © EPFL, Spring 2025 40

(7]
i
—
o
=
<
x
1]

Parameterized Verilog Module

Example: Majority Function, Contd.

= Verilog allows us to override the default parameter value
« Example, majority modules with 4-bit and 8-bit inputs and outputs:

// Instantiating majority module;
// Overriding the default value of WIDTH = 1;
// New value: WIDTH = 4;

majority #(.WIDTH(4)) U1 (.Ie(A), .I1(B), .I2(C), .0OUT(D));
// Instantiating majority module;

// Overriding the default value of WIDTH
// New value: WIDTH = 8;

1;

majority #(.WIDTH(8)) U2 (.IO(X), .I1(Y), .I2(Z), .OUT(W));

CS-173, © EPFL, Spring 2025

majority Ul
WIDTH = 4
——10
1 ouT
12
majority U2
WIDTH = 8
—10
8
—é; I1 ouT
—~—]12

41

* s s s E S E N EEEEENES
HEE NN NDE 8
*» * » s m EEEEEEHEN

Conditional Operator et —— =—=

In Verilog

CS-173, © EPFL, Spring 2025 47
© kras99 / Adobe Stock

Verilog Conditional Operator

A ? B : C

= Conditional operator ?: select one of the two alternate
expressions (B, C) depending on the value of a logical expression (A)
« If the logical expression (A) is true, it returns the first alternative (B)
« Otherwise, it returns the second alternative (C)

Return to the Verilog description of 2-to-4 decoder: link

Literature

FUNDAMENTALS OF

DIGITAL LOGIC

with Verilog Design

CS-173, © EPFL, Spring 2025

= (Chapter 4. Combinational-Circuit Building
Blocks
= 4.7 Decoders

= Appendix A: Verilog Reference
= A.6.3 Memories

44

